Improving Tool Life by Turning off Coolant
In this case study, learn how retooling with the Di-Pos Hexa high-performance face mill from Ingersoll Cutting Tools and turning off the coolant helped McGill Machine Works achieve eight times the tool life of its previous inserts plus an 80 percent boost in throughput.
Share





An advanced coating on the Di-Pos Hexa face mill reduces friction and insulates the insert substrate from overheating, eliminating the need to use coolant.
Although it may seem counterintuitive, dry machining punishing materials was one step of Schaumburg, Illinois, took to remedy premature insert rupture. According to Ingersoll Cutting Tools field representative Jarett Johnson, cutting fluids can often create thermal shock that can crack the coatings on today’s high-performance inserts.
This was very important for McGill, which was in the process of retooling with Ingersoll’s Di-Pos Hexa high-performance face mill to rough-mill a high-chrome, D-2-wrought stock piece that serves as a wear part in a nail-gun mechanism. The insert’s advanced coating diverts machining heat into the chips as they are flung away from the cutting zone, leaving the tool and workpiece cooler, and making cutting fluids unnecessary, Mr. Johnson says.
Read more about McGill’s retooling process and how it was able to save the company about $10,000 a year in this article from our December issue.
Related Content
-
Shoulder Milling Cuts Racing Part's Cycle Time By Over 50%
Pairing a shoulder mill with a five-axis machine has cut costs and cycle times for one of TTI Machine’s parts, enabling it to support a niche racing community.
-
Custom Workholding Principles to Live By
Workholding solutions can take on infinite forms and all would be correct to some degree. Follow these tips to help optimize custom workholding solutions.
-
Medical Shop Performs Lights-Out Production in Five-Axes
Moving to five-axis machining enabled this shop to dramatically reduce setup time and increase lights-out capacity, but success relied on the right combination of workholding and automation.